Eur. Phys. J. A 31, 758-760 (2007)
DOI 10.1140/epja/i2007-10007-5

THE EUROPEAN
PHYSICAL JOURNAL A

Special Article — QNP 2006

Goldstone boson counting in relativistic systems at finite density

T. Brauner?®

Department of Theoretical Physics, Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 250 68 Rez, Czech

Republic

Received: 8 January 2007

Published online: 22 March 2007 — (© Societa Italiana di Fisica / Springer-Verlag 2007

Abstract. We study the effects of finite chemical potential on the pattern of symmetry breaking within
the relativistic linear sigma model. In accordance with previous works we show that type-II Goldstone
bosons may appear whose dispersion relation is quadratic in momentum in the long-wavelength limit.
We show that their presence is tightly connected with nonzero densities of non-Abelian Noether charges,
and formulate a general counting rule for the number of the Goldstone bosons. Working at tree level, we
conclude with the discussion of the loop effects. Our results find an application in particular to cold dense
quark matter, where a type-II Goldstone boson has been found, e.g., in the phases with kaon condensation.

PACS. 11.30.Qc Spontaneous and radiative symmetry breaking

1 Introduction

Spontaneous symmetry breaking plays a key role in un-
derstanding vastly different physical phenomena in several
branches of physics, ranging from current high-energy and
particle physics to condensed matter. One of its general
consequences is the existence of the so-called Goldstone
bosons —soft fluctuations of the order parameter(s)—
guaranteed by the Goldstone theorem [1,2]. The num-
ber and properties of the Goldstone bosons (in particular,
their dispersion relations) are essential for the low-energy
dynamics of a system with spontaneously broken symme-
try. Moreover, they significantly affect the thermodynam-
ical properties of the system such as the heat capacity or
the transport coefficients.

As written in any textbook on relativistic quantum
field theory, in Lorentz-invariant theories the number of
Goldstone bosons associated with a spontaneously broken
internal symmetry (the case of a broken spacetime sym-
metry is treated, for instance, in ref. [3]) is always equal to
the number of broken symmetry generators. On the other
hand, in Lorentz-noninvariant systems', the situation is
more complicated. The basic result in this respect was
achieved by Nielsen and Chadha [4]. They showed that
under certain technical assumptions, the energy of the
Goldstone boson is proportional to some power of momen-
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! TIn the following, these will be collectively called nonrel-
ativistic in order to simplify the nomenclature. One should,
however, keep in mind that this term may denote both in-
trinsically nonrelativistic systems and relativistic systems with
Lorentz invariance explicitly broken, e.g., by nonzero density.

tum in the long-wavelength limit. The Goldstone boson is
then classified as type I, if this power is odd, or type II, if
it is even, respectively. The Nielsen-Chadha counting rule
states that the number of type-I Goldstone bosons plus
twice the number of type-II Goldstone bosons is greater or
equal to the number of broken generators.

In the past decade, the number of Goldstone bosons
was proven to be connected with the possibility that some
of the conserved (Noether) charges develop nonzero den-
sity in the ground state. In particular, Leutwyler analyzed
spontaneous symmetry breaking in nonrelativistic systems
within the framework of low-energy effective field the-
ory [5]. He showed that nonzero density of a non-Abelian
charge induces a term in the effective Lagrangian with a
single time derivative, which, in turn, gives rise to a type-II
Goldstone boson with a quadratic dispersion relation.

To summarize, the Nielsen-Chadha theorem clarifies
the connection of the number of the Goldstone bosons
and their dispersion relations. These are related, by Leut-
wyler’s work, to the Noether charge densities. However, to
the best of the author’s knowledge, a direct connection of
the Goldstone boson counting and the charge densities is
still missing. A partial result in this respect was achieved
by Schaefer et al. [6]: The Goldstone boson counting is as
usual, provided the densities of commutators of all pairs
of broken gemerators vanish.

In this contribution, we investigate the spontaneous
symmetry breaking within the relativistic linear sigma
model at finite chemical potential. This model was used to
describe kaon condensation in the so-called Color-Flavor-
Locked phase of dense quark matter [6,7]. Within this
restricted framework, we are able to convert the theorem
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of Schaefer et al. and show that the existence of type-II
Goldstone bosons is unavoidable once some of the Noether
charges develop nonzero density. Furthermore, we show
that the Nielsen-Chadha inequality for the number of the
Goldstone bosons is saturated. In the concluding section,
we discuss the extension of our results to other relativistic
systems at finite density.

2 Linear sigma model at finite chemical
potential

2.1 Model with SU(2) x U(1) symmetry

We start with the model of Schaefer et al. [6], and Miran-
sky and Shovkovy [7]. It is defined by the Lagrangian,

L=D,¢'D"¢p— M>¢'¢ — N#'¢)?, (1)

where D, ¢ = (0, — id,01)¢. The scalar field ¢ transforms
into the doublet representation of the global SU(2) sym-
metry group, and p is the chemical potential associated
with the global U(1) symmetry (particle number).

This model describes relativistic Bose-Einstein con-
densation: When p > M, the scalar field develops nonzero
vacuum expectation value. Consequently, the SU(2) x
U(1) symmetry of the Lagrangian (1) is spontaneously
broken to its U(1) subgroup (different from the original
U(1)). Thus, three of the symmetry generators are spon-
taneously broken. However, only two Goldstone bosons
appear, one type I and one type II. Their low-energy dis-
persion relations read

| u? — M2 p’
E=, 1 ——_ E== 2
32 — Pl o (2)

respectively.

2.2 Properties of the type-1l Goldstone boson

To get more insight into the nature of the type-II Gold-
stone boson, we now investigate the corresponding plane-
wave solutions of the classical equations of motion. With
the standard choice of the vacuum expectation value v,
the scalar ¢ is reparametrized as

1 0
_ Mrk‘rk/'u
¢ = /2¢ (’U+H>'

The type-II Goldstone boson is then annihilated by the
complex field ¢ = \%(7@ + im ). The relevant bilinear

part of the Lagrangian reads
Ly = 2ipt a0 + 8,010y, (3)

At the leading order of the power expansion in energy and
momentum, it is evidently of the Schroedinger type, which
is due to the fact that the field 9 carries nonzero charge
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of the unbroken U (1) symmetry, generated by the matrix
%(1 + Tg).

The Lagrangian (3) describes a free particle with ex-
act dispersion relation E = +/p? + p2 — u, whose low-
momentum limit is given by eq. (2). The correspond-
ing classical plane wave is simply 1 = e "?'*. The
SU(2) xU (1) symmetry of the Lagrangian (1) gives rise to
four conserved currents, the isospin current and the par-
ticle number current, j* = —2Im ¢TT0%¢ + 2u6"° I T ¢,
where T' = {7, 1}, respectively. For the two broken gener-
ators, 7; and 7y, that create the type-II Goldstone boson,
we find

it =+@" + 26" u)vv2Re
35 = =(p” + 26" p)vv2Im ¢

It is apparent that the type-II Goldstone boson corre-
sponds to an isospin wave, circularly polarized in the plane
perpendicular to the vacuum density of the isospin. Note
also that the other circular polarization corresponds to an
excitation with a gap 2u so that there is indeed a single
Goldstone boson which couples to the two broken genera-
tors.

The unbroken U(1) symmetry generates the current
J¥ = 2(p” + 6"°u)|¢|?. This uniform current proves that
the isospin wave transfers the unbroken charge. In other
words, the type-II Goldstone boson carries the unbroken
charge, which seems to be a generic feature of type-II
Goldstone bosons.

2.3 General bilinear Lagrangians

At tree level, the spectrum of the linear sigma model
follows from the bilinear part of the Lagrangian upon
a proper reparametrization of the scalar field. Once the
chemical potential is introduced, this bilinear Lagrangian
attains new terms with a single time derivative, which
communicate the effects of Lorentz violation by the dense
medium to the excitation spectrum. The generic form of
the bilinear Lagrangian one encounters is (see ref. [8] for
details)

%(auhf - %f2(u)h2 —9(w)hdor. (4)

As long as at least one of the functions f(u), g(u) is non-
zero, the Lagrangian (4) describes a massive mode, with
a mass gap \/f2(u) + ¢%(p), and a Goldstone boson with
a dispersion relation

E2 — f2(:u) 2 94(H)
P+ 92" 12 () + 92 (w)]

Equation (5) shows that when f(u) # 0, i.e., the chemical
potential mixes a Goldstone field with a Higgs field (as is
the case of 3 and H in the simple model (1)), one finds the
expected result: One massive and one massless excitation.
On the other hand, mixing of two Goldstone fields (such as
m1 and 7o above) gives rise to just one Goldstone boson,
which is type-II —its dispersion relation is quadratic at
low momentum.

1
Lyitin = 5(3u7f)2 +

7P +0(p°%). (5)
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2.4 Model with arbitrary symmetry

In ref. [8] we analyzed Bose-Einstein condensation in the
linear sigma model with an arbitrary symmetry breaking
pattern. The generic Lagrangian reads £ = D,¢'D#¢p —
V(#). The covariant derivative, D,¢ = (0, — i4,)¢, in-
volves a constant external field A, that accounts for the
chemical potential.

To find the spectrum, one minimizes the potential
V(¢) and determines the vacuum expectation value ¢y.
Next the scalar field is reparametrized as ¢ = e'I[¢o + H],
where the matrix field IT factorizes out the Goldstone de-
grees of freedom, while H represents the radial (Higgs)
modes. The resulting bilinear Lagrangian reads

Luitin = 8, H'O" H — Viyyin (H)
—2Tm HTA*9, H — 4Re H' A"8, 1T ¢y

+¢00, 3" [ po — Tm ¢} AP[IT,0, ) o, (6)
where Vi, is the bilinear part of the potential which
depends explicitly only on H.

The bilinear Lagrangian in eq. (6) contains three terms
with a single derivative, proportional to the chemical po-
tential. It can be shown that, with a proper choice of the
basis of the symmetry generators, every excitation mode
appears in exactly one of these terms so that the anal-
ysis of the simple two-field Lagrangian (4) applies. The
most notable result is that the Goldstone-Goldstone mix-
ing term in the last line of eq. (6), which according to
eq. (5) gives rise to type-II Goldstone bosons, is propor-
tional to the ground-state expectation value of the com-
mutator of two broken generators. This proves the asser-
tion made in the Introduction that a nonzero density of
a commutator of two broken generators gives rise to one
type-1I Goldstone boson with a quadratic dispersion rela-
tion. Moreover, it is also obvious that the Nielsen-Chadha
inequality for the number of the Goldstone bosons is satu-
rated. (The only exception to this saturation known to the
author, is the case of phase transitions where the phase ve-
locity of a type-I Goldstone boson may vanish, thus mak-
ing it an “accidental” type-II Goldstone boson.)

3 Summary and outlook

In this contribution, we investigated spontaneous symme-
try breaking within the relativistic linear sigma model at
finite chemical potential. We clarified the connection of
Goldstone boson counting and their dispersion relations
with nonzero densities of the Noether charges. In partic-
ular, we proved that nonzero density of a commutator of
two broken charges produces one type-II Goldstone boson
with a quadratic dispersion relation. It should be stressed,
however, that all the results were achieved at the classical,
tree level. Nevertheless, in ref. [9] it was shown that they
are not altered by the one-loop radiative corrections.
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Besides the radiative corrections to the linear sigma
model, it would also be desirable to extend the results
to other relativistic systems at finite density. In such sys-
tems, the Lorentz invariance is broken in a very particular
way by the presence of the dense medium. It is, however,
manifest on the microscopic level and hence could serve
to constrain the patterns of symmetry breaking and the
properties of the Goldstone bosons. One could thus hope-
fully strengthen the Nielsen-Chadha counting rule for this
restricted class of systems. Based on the results achieved
so far, we conjecture that generally an equality holds in-
stead of the inequality, and that the Goldstone boson dis-
persion relation is either linear or quadratic, depending
on the Lagrangian. (Recall that Nielsen and Chadha just
distinguish odd and even powers of momentum.)

A preliminary argument in this direction was already
given [8]. It was shown that when the symmetry group is
non-Abelian, the charge density itself may serve as an or-
der parameter for symmetry breaking. As a consequence, a
single Goldstone boson couples to the two broken charges
whose commutator yields the order parameter. In fact, by
a proper analysis one may even show that such a Gold-
stone boson then necessarily has a quadratic dispersion re-
lation. Using Leutwyler’s effective Lagrangian approach,
the coefficients in the dispersion relation can be related
to the amplitude for the annihilation of the Goldstone
boson by the broken current. This leads to a convenient
model-independent parametrization of the Goldstone bo-
son dispersion relations, which can be used as a check on
models of spontaneous symmetry breaking such as that of
Nambu and Jona-Lasinio. This issue will be investigated
in detail in our future work.
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